MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. EN 2.4878 Nickel

EN 1.4658 stainless steel belongs to the iron alloys classification, while EN 2.4878 nickel belongs to the nickel alloys. They have a modest 35% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is EN 2.4878 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
200
Elongation at Break, % 28
13 to 17
Fatigue Strength, MPa 530
400 to 410
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 81
78
Shear Strength, MPa 580
750 to 760
Tensile Strength: Ultimate (UTS), MPa 900
1210 to 1250
Tensile Strength: Yield (Proof), MPa 730
740 to 780

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Maximum Temperature: Mechanical, °C 1100
1030
Melting Completion (Liquidus), °C 1450
1370
Melting Onset (Solidus), °C 1400
1320
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 16
11
Thermal Expansion, µm/m-K 13
12

Otherwise Unclassified Properties

Base Metal Price, % relative 25
80
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 4.5
10
Embodied Energy, MJ/kg 61
150
Embodied Water, L/kg 200
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
150 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
1370 to 1540
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 32
41 to 42
Strength to Weight: Bending, points 26
31
Thermal Diffusivity, mm2/s 4.3
2.8
Thermal Shock Resistance, points 24
37 to 39

Alloy Composition

Aluminum (Al), % 0
1.2 to 1.6
Boron (B), % 0
0.010 to 0.015
Carbon (C), % 0 to 0.030
0.030 to 0.070
Chromium (Cr), % 26 to 29
23 to 25
Cobalt (Co), % 0.5 to 2.0
19 to 21
Copper (Cu), % 0 to 1.0
0 to 0.2
Iron (Fe), % 50.9 to 63.7
0 to 1.0
Manganese (Mn), % 0 to 1.5
0 to 0.5
Molybdenum (Mo), % 4.0 to 5.0
1.0 to 2.0
Nickel (Ni), % 5.5 to 9.5
43.6 to 52.2
Niobium (Nb), % 0
0.7 to 1.2
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0 to 0.010
Silicon (Si), % 0 to 0.5
0 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.0070
Tantalum (Ta), % 0
0 to 0.050
Titanium (Ti), % 0
2.8 to 3.2
Zirconium (Zr), % 0
0.030 to 0.070