MakeItFrom.com
Menu (ESC)

EN 1.4658 Stainless Steel vs. C82500 Copper

EN 1.4658 stainless steel belongs to the iron alloys classification, while C82500 copper belongs to the copper alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4658 stainless steel and the bottom bar is C82500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 28
1.0 to 20
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 81
45
Tensile Strength: Ultimate (UTS), MPa 900
550 to 1100
Tensile Strength: Yield (Proof), MPa 730
310 to 980

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
280
Melting Completion (Liquidus), °C 1450
980
Melting Onset (Solidus), °C 1400
860
Specific Heat Capacity, J/kg-K 470
390
Thermal Conductivity, W/m-K 16
130
Thermal Expansion, µm/m-K 13
17

Otherwise Unclassified Properties

Density, g/cm3 7.8
8.8
Embodied Carbon, kg CO2/kg material 4.5
10
Embodied Energy, MJ/kg 61
160
Embodied Water, L/kg 200
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 240
11 to 94
Resilience: Unit (Modulus of Resilience), kJ/m3 1280
400 to 4000
Stiffness to Weight: Axial, points 15
7.7
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 32
18 to 35
Strength to Weight: Bending, points 26
17 to 27
Thermal Diffusivity, mm2/s 4.3
38
Thermal Shock Resistance, points 24
19 to 38

Alloy Composition

Aluminum (Al), % 0
0 to 0.15
Beryllium (Be), % 0
1.9 to 2.3
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 26 to 29
0 to 0.1
Cobalt (Co), % 0.5 to 2.0
0.15 to 0.7
Copper (Cu), % 0 to 1.0
95.3 to 97.8
Iron (Fe), % 50.9 to 63.7
0 to 0.25
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.5
0
Molybdenum (Mo), % 4.0 to 5.0
0
Nickel (Ni), % 5.5 to 9.5
0 to 0.2
Nitrogen (N), % 0.3 to 0.5
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.5
0.2 to 0.35
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.12
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5