MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. C443.0 Aluminum

EN 1.4659 stainless steel belongs to the iron alloys classification, while C443.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is C443.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
65
Elastic (Young's, Tensile) Modulus, GPa 210
71
Elongation at Break, % 49
9.0
Fatigue Strength, MPa 460
120
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Shear Strength, MPa 640
130
Tensile Strength: Ultimate (UTS), MPa 900
230
Tensile Strength: Yield (Proof), MPa 480
100

Thermal Properties

Latent Heat of Fusion, J/g 300
470
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1480
630
Melting Onset (Solidus), °C 1430
600
Specific Heat Capacity, J/kg-K 460
900
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
37
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 37
9.5
Density, g/cm3 8.2
2.7
Embodied Carbon, kg CO2/kg material 6.5
7.9
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 220
1120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
17
Resilience: Unit (Modulus of Resilience), kJ/m3 550
70
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 31
24
Strength to Weight: Bending, points 25
31
Thermal Diffusivity, mm2/s 3.2
58
Thermal Shock Resistance, points 19
10

Alloy Composition

Aluminum (Al), % 0
89.6 to 95.5
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
0 to 0.6
Iron (Fe), % 35.7 to 45.7
0 to 2.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 2.0 to 4.0
0 to 0.35
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
0 to 0.5
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
4.5 to 6.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25