MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. EN 1.6368 Steel

Both EN 1.4659 stainless steel and EN 1.6368 steel are iron alloys. They have 44% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is EN 1.6368 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 210
190
Elongation at Break, % 49
18
Fatigue Strength, MPa 460
310 to 330
Impact Strength: V-Notched Charpy, J 94
43 to 46
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 81
73
Shear Strength, MPa 640
410 to 430
Tensile Strength: Ultimate (UTS), MPa 900
660 to 690
Tensile Strength: Yield (Proof), MPa 480
460 to 490

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1100
410
Melting Completion (Liquidus), °C 1480
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Conductivity, W/m-K 12
40
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 37
3.4
Density, g/cm3 8.2
7.9
Embodied Carbon, kg CO2/kg material 6.5
1.7
Embodied Energy, MJ/kg 89
22
Embodied Water, L/kg 220
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
110
Resilience: Unit (Modulus of Resilience), kJ/m3 550
580 to 650
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 31
23 to 24
Strength to Weight: Bending, points 25
21 to 22
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 19
20

Alloy Composition

Aluminum (Al), % 0
0.015 to 0.040
Carbon (C), % 0 to 0.020
0 to 0.17
Chromium (Cr), % 23 to 25
0 to 0.3
Copper (Cu), % 1.0 to 2.0
0.5 to 0.8
Iron (Fe), % 35.7 to 45.7
95.1 to 97.2
Manganese (Mn), % 2.0 to 4.0
0.8 to 1.2
Molybdenum (Mo), % 5.5 to 6.5
0.25 to 0.5
Nickel (Ni), % 21 to 23
1.0 to 1.3
Niobium (Nb), % 0
0.015 to 0.045
Nitrogen (N), % 0.35 to 0.5
0 to 0.020
Phosphorus (P), % 0 to 0.030
0 to 0.025
Silicon (Si), % 0 to 0.7
0.25 to 0.5
Sulfur (S), % 0 to 0.010
0 to 0.010
Tungsten (W), % 1.5 to 2.5
0