MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. EN AC-46600 Aluminum

EN 1.4659 stainless steel belongs to the iron alloys classification, while EN AC-46600 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is EN AC-46600 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
77
Elastic (Young's, Tensile) Modulus, GPa 210
72
Elongation at Break, % 49
1.1
Fatigue Strength, MPa 460
75
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
27
Tensile Strength: Ultimate (UTS), MPa 900
180
Tensile Strength: Yield (Proof), MPa 480
110

Thermal Properties

Latent Heat of Fusion, J/g 300
490
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1480
620
Melting Onset (Solidus), °C 1430
560
Specific Heat Capacity, J/kg-K 460
890
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 16
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
94

Otherwise Unclassified Properties

Base Metal Price, % relative 37
10
Density, g/cm3 8.2
2.8
Embodied Carbon, kg CO2/kg material 6.5
7.8
Embodied Energy, MJ/kg 89
150
Embodied Water, L/kg 220
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
1.7
Resilience: Unit (Modulus of Resilience), kJ/m3 550
81
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 31
18
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 3.2
51
Thermal Shock Resistance, points 19
8.1

Alloy Composition

Aluminum (Al), % 0
85.6 to 92.4
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
1.5 to 2.5
Iron (Fe), % 35.7 to 45.7
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0 to 0.35
Manganese (Mn), % 2.0 to 4.0
0.15 to 0.65
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
0 to 0.35
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
6.0 to 8.0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.15