MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. CC381H Copper-nickel

EN 1.4659 stainless steel belongs to the iron alloys classification, while CC381H copper-nickel belongs to the copper alloys. They have a modest 25% of their average alloy composition in common, which, by itself, doesn't mean much. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
91
Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 49
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
52
Tensile Strength: Ultimate (UTS), MPa 900
380
Tensile Strength: Yield (Proof), MPa 480
140

Thermal Properties

Latent Heat of Fusion, J/g 300
240
Maximum Temperature: Mechanical, °C 1100
260
Melting Completion (Liquidus), °C 1480
1180
Melting Onset (Solidus), °C 1430
1120
Specific Heat Capacity, J/kg-K 460
410
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 16
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
6.8
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 37
40
Density, g/cm3 8.2
8.9
Embodied Carbon, kg CO2/kg material 6.5
5.0
Embodied Energy, MJ/kg 89
73
Embodied Water, L/kg 220
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
60
Resilience: Unit (Modulus of Resilience), kJ/m3 550
68
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 31
12
Strength to Weight: Bending, points 25
13
Thermal Diffusivity, mm2/s 3.2
8.4
Thermal Shock Resistance, points 19
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.020
0 to 0.030
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
64.5 to 69.9
Iron (Fe), % 35.7 to 45.7
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 2.0 to 4.0
0.6 to 1.2
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
29 to 31
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.010
Silicon (Si), % 0 to 0.7
0 to 0.1
Sulfur (S), % 0 to 0.010
0 to 0.010
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.5