MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. C18700 Copper

EN 1.4659 stainless steel belongs to the iron alloys classification, while C18700 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is C18700 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 49
9.0 to 9.6
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
43
Shear Strength, MPa 640
170 to 190
Tensile Strength: Ultimate (UTS), MPa 900
290 to 330
Tensile Strength: Yield (Proof), MPa 480
230 to 250

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1480
1080
Melting Onset (Solidus), °C 1430
950
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
380
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
98
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
99

Otherwise Unclassified Properties

Base Metal Price, % relative 37
30
Density, g/cm3 8.2
9.0
Embodied Carbon, kg CO2/kg material 6.5
2.6
Embodied Energy, MJ/kg 89
41
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
24 to 29
Resilience: Unit (Modulus of Resilience), kJ/m3 550
240 to 280
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 31
9.0 to 10
Strength to Weight: Bending, points 25
11 to 12
Thermal Diffusivity, mm2/s 3.2
110
Thermal Shock Resistance, points 19
10 to 12

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
98 to 99.2
Iron (Fe), % 35.7 to 45.7
0
Lead (Pb), % 0
0.8 to 1.5
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tungsten (W), % 1.5 to 2.5
0
Residuals, % 0
0 to 0.5