MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. C51900 Bronze

EN 1.4659 stainless steel belongs to the iron alloys classification, while C51900 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is C51900 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
110
Elongation at Break, % 49
14 to 29
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 81
42
Shear Strength, MPa 640
320 to 370
Tensile Strength: Ultimate (UTS), MPa 900
380 to 620
Tensile Strength: Yield (Proof), MPa 480
390 to 570

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1480
1040
Melting Onset (Solidus), °C 1430
930
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
66
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
14
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.5
3.2
Embodied Energy, MJ/kg 89
51
Embodied Water, L/kg 220
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
55 to 180
Resilience: Unit (Modulus of Resilience), kJ/m3 550
680 to 1450
Stiffness to Weight: Axial, points 14
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 31
12 to 19
Strength to Weight: Bending, points 25
13 to 18
Thermal Diffusivity, mm2/s 3.2
20
Thermal Shock Resistance, points 19
14 to 22

Alloy Composition

Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
91.7 to 95
Iron (Fe), % 35.7 to 45.7
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
0
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0.030 to 0.35
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.010
0
Tin (Sn), % 0
5.0 to 7.0
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.5