MakeItFrom.com
Menu (ESC)

EN 1.4659 Stainless Steel vs. C97600 Dairy Metal

EN 1.4659 stainless steel belongs to the iron alloys classification, while C97600 dairy metal belongs to the copper alloys. They have a modest 23% of their average alloy composition in common, which, by itself, doesn't mean much. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4659 stainless steel and the bottom bar is C97600 dairy metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
120
Elongation at Break, % 49
11
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 81
46
Tensile Strength: Ultimate (UTS), MPa 900
310
Tensile Strength: Yield (Proof), MPa 480
140

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
210
Melting Completion (Liquidus), °C 1480
1140
Melting Onset (Solidus), °C 1430
1110
Specific Heat Capacity, J/kg-K 460
380
Thermal Conductivity, W/m-K 12
22
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 37
37
Density, g/cm3 8.2
8.8
Embodied Carbon, kg CO2/kg material 6.5
4.6
Embodied Energy, MJ/kg 89
69
Embodied Water, L/kg 220
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 370
29
Resilience: Unit (Modulus of Resilience), kJ/m3 550
85
Stiffness to Weight: Axial, points 14
7.7
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 31
9.8
Strength to Weight: Bending, points 25
12
Thermal Diffusivity, mm2/s 3.2
6.5
Thermal Shock Resistance, points 19
11

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.020
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 1.0 to 2.0
63 to 67
Iron (Fe), % 35.7 to 45.7
0 to 1.5
Lead (Pb), % 0
3.0 to 5.0
Manganese (Mn), % 2.0 to 4.0
0
Molybdenum (Mo), % 5.5 to 6.5
0
Nickel (Ni), % 21 to 23
19 to 21.5
Nitrogen (N), % 0.35 to 0.5
0
Phosphorus (P), % 0 to 0.030
0 to 0.050
Silicon (Si), % 0 to 0.7
0 to 0.15
Sulfur (S), % 0 to 0.010
0 to 0.080
Tin (Sn), % 0
3.5 to 4.0
Tungsten (W), % 1.5 to 2.5
0
Zinc (Zn), % 0
3.0 to 9.0
Residuals, % 0
0 to 0.3