MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. 2117 Aluminum

EN 1.4662 stainless steel belongs to the iron alloys classification, while 2117 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is 2117 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
26
Fatigue Strength, MPa 430 to 450
95
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Shear Strength, MPa 520 to 540
200
Tensile Strength: Ultimate (UTS), MPa 810 to 830
300
Tensile Strength: Yield (Proof), MPa 580 to 620
170

Thermal Properties

Latent Heat of Fusion, J/g 290
400
Maximum Temperature: Mechanical, °C 1090
220
Melting Completion (Liquidus), °C 1430
650
Melting Onset (Solidus), °C 1380
550
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
150
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.2
8.2
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 170
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
64
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
47
Strength to Weight: Axial, points 29 to 30
28
Strength to Weight: Bending, points 25
33
Thermal Diffusivity, mm2/s 3.9
59
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 0
91 to 97.6
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0 to 0.1
Copper (Cu), % 0.1 to 0.8
2.2 to 4.5
Iron (Fe), % 62.6 to 70.2
0 to 0.7
Magnesium (Mg), % 0
0.2 to 1.0
Manganese (Mn), % 2.5 to 4.0
0.4 to 1.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
0.2 to 0.8
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0 to 0.25
Residuals, % 0
0 to 0.15