MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. 383.0 Aluminum

EN 1.4662 stainless steel belongs to the iron alloys classification, while 383.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is 383.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
73
Elongation at Break, % 28
3.5
Fatigue Strength, MPa 430 to 450
150
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
28
Tensile Strength: Ultimate (UTS), MPa 810 to 830
280
Tensile Strength: Yield (Proof), MPa 580 to 620
150

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1430
580
Melting Onset (Solidus), °C 1380
540
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
96
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
74

Otherwise Unclassified Properties

Base Metal Price, % relative 16
10
Density, g/cm3 7.7
2.8
Embodied Carbon, kg CO2/kg material 3.2
7.5
Embodied Energy, MJ/kg 45
140
Embodied Water, L/kg 170
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
8.2
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
150
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 29 to 30
28
Strength to Weight: Bending, points 25
34
Thermal Diffusivity, mm2/s 3.9
39
Thermal Shock Resistance, points 22
13

Alloy Composition

Aluminum (Al), % 0
79.7 to 88.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
2.0 to 3.0
Iron (Fe), % 62.6 to 70.2
0 to 1.3
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 2.5 to 4.0
0 to 0.5
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0 to 0.3
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
9.5 to 11.5
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 3.0
Residuals, % 0
0 to 0.5