MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. 712.0 Aluminum

EN 1.4662 stainless steel belongs to the iron alloys classification, while 712.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is 712.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
4.5 to 4.7
Fatigue Strength, MPa 430 to 450
140 to 180
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 79
27
Shear Strength, MPa 520 to 540
180
Tensile Strength: Ultimate (UTS), MPa 810 to 830
250 to 260
Tensile Strength: Yield (Proof), MPa 580 to 620
180 to 200

Thermal Properties

Latent Heat of Fusion, J/g 290
380
Maximum Temperature: Mechanical, °C 1090
190
Melting Completion (Liquidus), °C 1430
640
Melting Onset (Solidus), °C 1380
610
Specific Heat Capacity, J/kg-K 480
870
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
120

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
3.0
Embodied Carbon, kg CO2/kg material 3.2
8.0
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 170
1140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
11
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
240 to 270
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 25
46
Strength to Weight: Axial, points 29 to 30
24 to 25
Strength to Weight: Bending, points 25
30 to 31
Thermal Diffusivity, mm2/s 3.9
62
Thermal Shock Resistance, points 22
11

Alloy Composition

Aluminum (Al), % 0
90.7 to 94
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0.4 to 0.6
Copper (Cu), % 0.1 to 0.8
0 to 0.25
Iron (Fe), % 62.6 to 70.2
0 to 0.5
Magnesium (Mg), % 0
0.5 to 0.65
Manganese (Mn), % 2.5 to 4.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
0 to 0.3
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0.15 to 0.25
Zinc (Zn), % 0
5.0 to 6.5
Residuals, % 0
0 to 0.2