MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. A444.0 Aluminum

EN 1.4662 stainless steel belongs to the iron alloys classification, while A444.0 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is A444.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
70
Elongation at Break, % 28
18
Fatigue Strength, MPa 430 to 450
37
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
26
Tensile Strength: Ultimate (UTS), MPa 810 to 830
160
Tensile Strength: Yield (Proof), MPa 580 to 620
66

Thermal Properties

Latent Heat of Fusion, J/g 290
500
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1430
630
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
160
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
41
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
140

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.2
7.9
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 170
1110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
24
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
31
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
53
Strength to Weight: Axial, points 29 to 30
17
Strength to Weight: Bending, points 25
25
Thermal Diffusivity, mm2/s 3.9
68
Thermal Shock Resistance, points 22
7.3

Alloy Composition

Aluminum (Al), % 0
91.6 to 93.5
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
0 to 0.1
Iron (Fe), % 62.6 to 70.2
0 to 0.2
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 2.5 to 4.0
0 to 0.1
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
6.5 to 7.5
Sulfur (S), % 0 to 0.0050
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15