MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. EN AC-43000 Aluminum

EN 1.4662 stainless steel belongs to the iron alloys classification, while EN AC-43000 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is EN AC-43000 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
71
Elongation at Break, % 28
1.1 to 2.5
Fatigue Strength, MPa 430 to 450
68 to 76
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
27
Tensile Strength: Ultimate (UTS), MPa 810 to 830
180 to 270
Tensile Strength: Yield (Proof), MPa 580 to 620
97 to 230

Thermal Properties

Latent Heat of Fusion, J/g 290
540
Maximum Temperature: Mechanical, °C 1090
170
Melting Completion (Liquidus), °C 1430
600
Melting Onset (Solidus), °C 1380
590
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 15
140
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
38
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
130

Otherwise Unclassified Properties

Base Metal Price, % relative 16
9.5
Density, g/cm3 7.7
2.6
Embodied Carbon, kg CO2/kg material 3.2
7.8
Embodied Energy, MJ/kg 45
150
Embodied Water, L/kg 170
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
2.9 to 5.7
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
66 to 360
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 25
54
Strength to Weight: Axial, points 29 to 30
20 to 29
Strength to Weight: Bending, points 25
28 to 36
Thermal Diffusivity, mm2/s 3.9
60
Thermal Shock Resistance, points 22
8.6 to 12

Alloy Composition

Aluminum (Al), % 0
87 to 90.8
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
0 to 0.050
Iron (Fe), % 62.6 to 70.2
0 to 0.55
Lead (Pb), % 0
0 to 0.050
Magnesium (Mg), % 0
0.2 to 0.45
Manganese (Mn), % 2.5 to 4.0
0 to 0.45
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0 to 0.050
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
9.0 to 11
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15