MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C46500 Brass

EN 1.4662 stainless steel belongs to the iron alloys classification, while C46500 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C46500 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
100
Elongation at Break, % 28
18 to 50
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
40
Shear Strength, MPa 520 to 540
280 to 380
Tensile Strength: Ultimate (UTS), MPa 810 to 830
380 to 610
Tensile Strength: Yield (Proof), MPa 580 to 620
190 to 490

Thermal Properties

Latent Heat of Fusion, J/g 290
170
Maximum Temperature: Mechanical, °C 1090
120
Melting Completion (Liquidus), °C 1430
900
Melting Onset (Solidus), °C 1380
890
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
120
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
26
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
29

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.7
8.0
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 170
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
99 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
170 to 1170
Stiffness to Weight: Axial, points 15
7.2
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 29 to 30
13 to 21
Strength to Weight: Bending, points 25
15 to 20
Thermal Diffusivity, mm2/s 3.9
38
Thermal Shock Resistance, points 22
13 to 20

Alloy Composition

Arsenic (As), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
59 to 62
Iron (Fe), % 62.6 to 70.2
0 to 0.1
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
0
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0.5 to 1.0
Zinc (Zn), % 0
36.2 to 40.5
Residuals, % 0
0 to 0.4