MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C68400 Brass

EN 1.4662 stainless steel belongs to the iron alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
18
Poisson's Ratio 0.27
0.31
Shear Modulus, GPa 79
41
Shear Strength, MPa 520 to 540
330
Tensile Strength: Ultimate (UTS), MPa 810 to 830
540
Tensile Strength: Yield (Proof), MPa 580 to 620
310

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1090
130
Melting Completion (Liquidus), °C 1430
840
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
400
Thermal Conductivity, W/m-K 15
66
Thermal Expansion, µm/m-K 13
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
87
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
99

Otherwise Unclassified Properties

Base Metal Price, % relative 16
23
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
47
Embodied Water, L/kg 170
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
81
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
460
Stiffness to Weight: Axial, points 15
7.5
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 29 to 30
19
Strength to Weight: Bending, points 25
19
Thermal Diffusivity, mm2/s 3.9
21
Thermal Shock Resistance, points 22
18

Alloy Composition

Aluminum (Al), % 0
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
59 to 64
Iron (Fe), % 62.6 to 70.2
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 2.5 to 4.0
0.2 to 1.5
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0 to 0.5
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0.030 to 0.3
Silicon (Si), % 0 to 0.7
1.5 to 2.5
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0
28.6 to 39.3
Residuals, % 0
0 to 0.5