MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C72150 Copper-nickel

EN 1.4662 stainless steel belongs to the iron alloys classification, while C72150 copper-nickel belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C72150 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
150
Elongation at Break, % 28
29
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
55
Shear Strength, MPa 520 to 540
320
Tensile Strength: Ultimate (UTS), MPa 810 to 830
490
Tensile Strength: Yield (Proof), MPa 580 to 620
210

Thermal Properties

Latent Heat of Fusion, J/g 290
250
Maximum Temperature: Mechanical, °C 1090
600
Melting Completion (Liquidus), °C 1430
1210
Melting Onset (Solidus), °C 1380
1250
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
22
Thermal Expansion, µm/m-K 13
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
3.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
3.6

Otherwise Unclassified Properties

Base Metal Price, % relative 16
45
Density, g/cm3 7.7
8.9
Embodied Carbon, kg CO2/kg material 3.2
6.1
Embodied Energy, MJ/kg 45
88
Embodied Water, L/kg 170
270

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
120
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
150
Stiffness to Weight: Axial, points 15
9.1
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 29 to 30
15
Strength to Weight: Bending, points 25
15
Thermal Diffusivity, mm2/s 3.9
6.0
Thermal Shock Resistance, points 22
18

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.1
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
52.5 to 57
Iron (Fe), % 62.6 to 70.2
0 to 0.1
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 2.5 to 4.0
0 to 0.050
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
43 to 46
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
0 to 0.5
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.5