MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C84100 Brass

EN 1.4662 stainless steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
13
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
39
Tensile Strength: Ultimate (UTS), MPa 810 to 830
230
Tensile Strength: Yield (Proof), MPa 580 to 620
81

Thermal Properties

Latent Heat of Fusion, J/g 290
190
Maximum Temperature: Mechanical, °C 1090
160
Melting Completion (Liquidus), °C 1430
1000
Melting Onset (Solidus), °C 1380
810
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
23
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
25

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 3.2
2.9
Embodied Energy, MJ/kg 45
48
Embodied Water, L/kg 170
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
24
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
30
Stiffness to Weight: Axial, points 15
7.1
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29 to 30
7.4
Strength to Weight: Bending, points 25
9.7
Thermal Diffusivity, mm2/s 3.9
33
Thermal Shock Resistance, points 22
7.8

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
78 to 85
Iron (Fe), % 62.6 to 70.2
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0 to 0.5
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0 to 0.7
0 to 0.010
Sulfur (S), % 0 to 0.0050
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5