MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. C87600 Bronze

EN 1.4662 stainless steel belongs to the iron alloys classification, while C87600 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is C87600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 28
18
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 79
42
Tensile Strength: Ultimate (UTS), MPa 810 to 830
470
Tensile Strength: Yield (Proof), MPa 580 to 620
230

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Mechanical, °C 1090
190
Melting Completion (Liquidus), °C 1430
970
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 15
28
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.0
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
6.4

Otherwise Unclassified Properties

Base Metal Price, % relative 16
29
Density, g/cm3 7.7
8.5
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 45
43
Embodied Water, L/kg 170
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
71
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
240
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 29 to 30
16
Strength to Weight: Bending, points 25
16
Thermal Diffusivity, mm2/s 3.9
8.1
Thermal Shock Resistance, points 22
17

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 23 to 25
0
Copper (Cu), % 0.1 to 0.8
88 to 92.5
Iron (Fe), % 62.6 to 70.2
0
Lead (Pb), % 0
0 to 0.5
Manganese (Mn), % 2.5 to 4.0
0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0 to 0.7
3.5 to 5.5
Sulfur (S), % 0 to 0.0050
0
Zinc (Zn), % 0
4.0 to 7.0
Residuals, % 0
0 to 0.5