MakeItFrom.com
Menu (ESC)

EN 1.4662 Stainless Steel vs. S20431 Stainless Steel

Both EN 1.4662 stainless steel and S20431 stainless steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.4662 stainless steel and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 28
46
Fatigue Strength, MPa 430 to 450
320
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 79
76
Shear Strength, MPa 520 to 540
500
Tensile Strength: Ultimate (UTS), MPa 810 to 830
710
Tensile Strength: Yield (Proof), MPa 580 to 620
350

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 440
410
Maximum Temperature: Mechanical, °C 1090
890
Melting Completion (Liquidus), °C 1430
1400
Melting Onset (Solidus), °C 1380
1360
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 13
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 16
12
Density, g/cm3 7.7
7.7
Embodied Carbon, kg CO2/kg material 3.2
2.5
Embodied Energy, MJ/kg 45
36
Embodied Water, L/kg 170
140

Common Calculations

PREN (Pitting Resistance) 33
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 210
270
Resilience: Unit (Modulus of Resilience), kJ/m3 840 to 940
310
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 29 to 30
25
Strength to Weight: Bending, points 25
23
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 22
15

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.12
Chromium (Cr), % 23 to 25
17 to 18
Copper (Cu), % 0.1 to 0.8
1.5 to 3.5
Iron (Fe), % 62.6 to 70.2
66.1 to 74.4
Manganese (Mn), % 2.5 to 4.0
5.0 to 7.0
Molybdenum (Mo), % 1.0 to 2.0
0
Nickel (Ni), % 3.0 to 4.5
2.0 to 4.0
Nitrogen (N), % 0.2 to 0.3
0.1 to 0.25
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.7
0 to 1.0
Sulfur (S), % 0 to 0.0050
0 to 0.030