MakeItFrom.com
Menu (ESC)

EN 1.4669 Stainless Steel vs. 319.0 Aluminum

EN 1.4669 stainless steel belongs to the iron alloys classification, while 319.0 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4669 stainless steel and the bottom bar is 319.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 260
78 to 84
Elastic (Young's, Tensile) Modulus, GPa 200
72
Elongation at Break, % 28
1.8 to 2.0
Fatigue Strength, MPa 330
76 to 80
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 78
27
Shear Strength, MPa 500
170 to 210
Tensile Strength: Ultimate (UTS), MPa 780
190 to 240
Tensile Strength: Yield (Proof), MPa 450
110 to 180

Thermal Properties

Latent Heat of Fusion, J/g 290
480
Maximum Temperature: Mechanical, °C 1030
170
Melting Completion (Liquidus), °C 1420
600
Melting Onset (Solidus), °C 1370
540
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 15
110
Thermal Expansion, µm/m-K 13
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
84

Otherwise Unclassified Properties

Base Metal Price, % relative 13
10
Density, g/cm3 7.7
2.9
Embodied Carbon, kg CO2/kg material 2.6
7.7
Embodied Energy, MJ/kg 38
140
Embodied Water, L/kg 160
1080

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 190
3.3 to 3.9
Resilience: Unit (Modulus of Resilience), kJ/m3 510
88 to 220
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 28
18 to 24
Strength to Weight: Bending, points 24
25 to 30
Thermal Diffusivity, mm2/s 4.0
44
Thermal Shock Resistance, points 21
8.6 to 11

Alloy Composition

Aluminum (Al), % 0
85.8 to 91.5
Carbon (C), % 0 to 0.045
0
Chromium (Cr), % 21.5 to 24
0
Copper (Cu), % 1.6 to 3.0
3.0 to 4.0
Iron (Fe), % 65.2 to 74.8
0 to 1.0
Magnesium (Mg), % 0
0 to 0.1
Manganese (Mn), % 1.0 to 3.0
0 to 0.5
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 1.0 to 3.0
0 to 0.35
Nitrogen (N), % 0.12 to 0.2
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
5.5 to 6.5
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5