MakeItFrom.com
Menu (ESC)

EN 1.4713 Stainless Steel vs. S30441 Stainless Steel

Both EN 1.4713 stainless steel and S30441 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 75% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4713 stainless steel and the bottom bar is S30441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 20
45
Fatigue Strength, MPa 160
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 74
76
Shear Strength, MPa 320
400
Tensile Strength: Ultimate (UTS), MPa 520
580
Tensile Strength: Yield (Proof), MPa 250
230

Thermal Properties

Latent Heat of Fusion, J/g 270
300
Maximum Temperature: Corrosion, °C 370
460
Maximum Temperature: Mechanical, °C 800
940
Melting Completion (Liquidus), °C 1440
1420
Melting Onset (Solidus), °C 1400
1370
Specific Heat Capacity, J/kg-K 480
480
Thermal Conductivity, W/m-K 23
15
Thermal Expansion, µm/m-K 11
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 4.6
18
Density, g/cm3 7.7
7.8
Embodied Carbon, kg CO2/kg material 1.7
3.4
Embodied Energy, MJ/kg 24
50
Embodied Water, L/kg 84
150

Common Calculations

PREN (Pitting Resistance) 7.0
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 84
210
Resilience: Unit (Modulus of Resilience), kJ/m3 160
140
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 6.2
4.0
Thermal Shock Resistance, points 18
13

Alloy Composition

Aluminum (Al), % 0.5 to 1.0
0
Carbon (C), % 0 to 0.12
0 to 0.080
Chromium (Cr), % 6.0 to 8.0
17.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 88.8 to 93
62 to 71.7
Manganese (Mn), % 0 to 1.0
0 to 2.0
Nickel (Ni), % 0
8.0 to 10.5
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0.5 to 1.0
1.0 to 2.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8