MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. C19200 Copper

EN 1.4736 stainless steel belongs to the iron alloys classification, while C19200 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is C19200 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 28
2.0 to 35
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
44
Shear Strength, MPa 370
190 to 300
Tensile Strength: Ultimate (UTS), MPa 580
280 to 530
Tensile Strength: Yield (Proof), MPa 310
98 to 510

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 1000
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1380
1080
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 21
240
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
58 to 74
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
58 to 75

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
30
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.4
2.6
Embodied Energy, MJ/kg 35
41
Embodied Water, L/kg 140
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
10 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 250
42 to 1120
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.8 to 17
Strength to Weight: Bending, points 20
11 to 16
Thermal Diffusivity, mm2/s 5.6
69
Thermal Shock Resistance, points 21
10 to 19

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 0
98.5 to 99.19
Iron (Fe), % 77 to 81.1
0.8 to 1.2
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0.010 to 0.040
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.2