MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. C41300 Brass

EN 1.4736 stainless steel belongs to the iron alloys classification, while C41300 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is C41300 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 28
2.0 to 44
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
42
Shear Strength, MPa 370
230 to 370
Tensile Strength: Ultimate (UTS), MPa 580
300 to 630
Tensile Strength: Yield (Proof), MPa 310
120 to 570

Thermal Properties

Latent Heat of Fusion, J/g 290
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1420
1040
Melting Onset (Solidus), °C 1380
1010
Specific Heat Capacity, J/kg-K 490
380
Thermal Conductivity, W/m-K 21
130
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
30
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
31

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
29
Density, g/cm3 7.6
8.7
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 35
44
Embodied Water, L/kg 140
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
11 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
69 to 1440
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
9.6 to 20
Strength to Weight: Bending, points 20
11 to 19
Thermal Diffusivity, mm2/s 5.6
40
Thermal Shock Resistance, points 21
11 to 22

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 0
89 to 93
Iron (Fe), % 77 to 81.1
0 to 0.050
Lead (Pb), % 0
0 to 0.1
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0.7 to 1.3
Titanium (Ti), % 0.2 to 0.8
0
Zinc (Zn), % 0
5.1 to 10.3
Residuals, % 0
0 to 0.5