MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. C96400 Copper-nickel

EN 1.4736 stainless steel belongs to the iron alloys classification, while C96400 copper-nickel belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is C96400 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Elongation at Break, % 28
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
51
Tensile Strength: Ultimate (UTS), MPa 580
490
Tensile Strength: Yield (Proof), MPa 310
260

Thermal Properties

Latent Heat of Fusion, J/g 290
240
Maximum Temperature: Mechanical, °C 1000
260
Melting Completion (Liquidus), °C 1420
1240
Melting Onset (Solidus), °C 1380
1170
Specific Heat Capacity, J/kg-K 490
400
Thermal Conductivity, W/m-K 21
28
Thermal Expansion, µm/m-K 10
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
5.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
5.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
45
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.4
5.9
Embodied Energy, MJ/kg 35
87
Embodied Water, L/kg 140
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
100
Resilience: Unit (Modulus of Resilience), kJ/m3 250
250
Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
15
Strength to Weight: Bending, points 20
16
Thermal Diffusivity, mm2/s 5.6
7.8
Thermal Shock Resistance, points 21
17

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0 to 0.15
Chromium (Cr), % 17 to 18
0
Copper (Cu), % 0
62.3 to 71.3
Iron (Fe), % 77 to 81.1
0.25 to 1.5
Lead (Pb), % 0
0 to 0.010
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0
28 to 32
Niobium (Nb), % 0
0.5 to 1.5
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.015
0 to 0.020
Titanium (Ti), % 0.2 to 0.8
0
Residuals, % 0
0 to 0.5