MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. S17400 Stainless Steel

Both EN 1.4736 stainless steel and S17400 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
280 to 440
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
11 to 21
Fatigue Strength, MPa 230
380 to 670
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
75
Shear Strength, MPa 370
570 to 830
Tensile Strength: Ultimate (UTS), MPa 580
910 to 1390
Tensile Strength: Yield (Proof), MPa 310
580 to 1250

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
450
Maximum Temperature: Mechanical, °C 1000
850
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
17
Thermal Expansion, µm/m-K 10
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
14
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.4
2.7
Embodied Energy, MJ/kg 35
39
Embodied Water, L/kg 140
130

Common Calculations

PREN (Pitting Resistance) 18
16
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
140 to 160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
880 to 4060
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
32 to 49
Strength to Weight: Bending, points 20
27 to 35
Thermal Diffusivity, mm2/s 5.6
4.5
Thermal Shock Resistance, points 21
30 to 46

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0 to 0.070
Chromium (Cr), % 17 to 18
15 to 17
Copper (Cu), % 0
3.0 to 5.0
Iron (Fe), % 77 to 81.1
70.4 to 78.9
Manganese (Mn), % 0 to 1.0
0 to 1.0
Nickel (Ni), % 0
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0