MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. S20431 Stainless Steel

Both EN 1.4736 stainless steel and S20431 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 89% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is S20431 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
210
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 28
46
Fatigue Strength, MPa 230
320
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 370
500
Tensile Strength: Ultimate (UTS), MPa 580
710
Tensile Strength: Yield (Proof), MPa 310
350

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Maximum Temperature: Corrosion, °C 500
410
Maximum Temperature: Mechanical, °C 1000
890
Melting Completion (Liquidus), °C 1420
1400
Melting Onset (Solidus), °C 1380
1360
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
15
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
2.8

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
12
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 2.4
2.5
Embodied Energy, MJ/kg 35
36
Embodied Water, L/kg 140
140

Common Calculations

PREN (Pitting Resistance) 18
20
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
270
Resilience: Unit (Modulus of Resilience), kJ/m3 250
310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
25
Strength to Weight: Bending, points 20
23
Thermal Diffusivity, mm2/s 5.6
4.0
Thermal Shock Resistance, points 21
15

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0 to 0.12
Chromium (Cr), % 17 to 18
17 to 18
Copper (Cu), % 0
1.5 to 3.5
Iron (Fe), % 77 to 81.1
66.1 to 74.4
Manganese (Mn), % 0 to 1.0
5.0 to 7.0
Nickel (Ni), % 0
2.0 to 4.0
Nitrogen (N), % 0
0.1 to 0.25
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0.2 to 0.8
0