MakeItFrom.com
Menu (ESC)

EN 1.4736 Stainless Steel vs. S40977 Stainless Steel

Both EN 1.4736 stainless steel and S40977 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 92% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4736 stainless steel and the bottom bar is S40977 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
21
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 76
76
Shear Strength, MPa 370
320
Tensile Strength: Ultimate (UTS), MPa 580
510
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 290
270
Maximum Temperature: Corrosion, °C 500
390
Maximum Temperature: Mechanical, °C 1000
720
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1400
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 21
25
Thermal Expansion, µm/m-K 10
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 3.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
6.5
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.4
1.9
Embodied Energy, MJ/kg 35
27
Embodied Water, L/kg 140
97

Common Calculations

PREN (Pitting Resistance) 18
12
Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
92
Resilience: Unit (Modulus of Resilience), kJ/m3 250
250
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 21
18
Strength to Weight: Bending, points 20
18
Thermal Diffusivity, mm2/s 5.6
6.7
Thermal Shock Resistance, points 21
18

Alloy Composition

Aluminum (Al), % 1.7 to 2.1
0
Carbon (C), % 0 to 0.040
0 to 0.030
Chromium (Cr), % 17 to 18
10.5 to 12.5
Iron (Fe), % 77 to 81.1
83.9 to 89.2
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0
0.3 to 1.0
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0.2 to 0.8
0