MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. 7129 Aluminum

EN 1.4749 stainless steel belongs to the iron alloys classification, while 7129 Aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is 7129 Aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 16
9.0 to 9.1
Fatigue Strength, MPa 190
150 to 190
Poisson's Ratio 0.27
0.33
Shear Modulus, GPa 80
26
Shear Strength, MPa 370
250 to 260
Tensile Strength: Ultimate (UTS), MPa 600
430
Tensile Strength: Yield (Proof), MPa 320
380 to 390

Thermal Properties

Latent Heat of Fusion, J/g 300
380
Maximum Temperature: Mechanical, °C 1100
180
Melting Completion (Liquidus), °C 1420
630
Melting Onset (Solidus), °C 1380
510
Specific Heat Capacity, J/kg-K 490
880
Thermal Conductivity, W/m-K 17
150
Thermal Expansion, µm/m-K 9.6
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
40
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
120

Otherwise Unclassified Properties

Base Metal Price, % relative 13
9.5
Density, g/cm3 7.6
2.9
Embodied Carbon, kg CO2/kg material 2.5
8.3
Embodied Energy, MJ/kg 36
150
Embodied Water, L/kg 160
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
37 to 38
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1050 to 1090
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
47
Strength to Weight: Axial, points 22
41
Strength to Weight: Bending, points 21
43 to 44
Thermal Diffusivity, mm2/s 4.6
58
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 0
91 to 94
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 26 to 29
0 to 0.1
Copper (Cu), % 0
0.5 to 0.9
Gallium (Ga), % 0
0 to 0.030
Iron (Fe), % 68.5 to 73.7
0 to 0.3
Magnesium (Mg), % 0
1.3 to 2.0
Manganese (Mn), % 0 to 1.0
0 to 0.1
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0
4.2 to 5.2
Residuals, % 0
0 to 0.15