MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. AWS ER80S-B3L

Both EN 1.4749 stainless steel and AWS ER80S-B3L are iron alloys. They have 75% of their average alloy composition in common. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 16
19
Poisson's Ratio 0.27
0.29
Shear Modulus, GPa 80
74
Tensile Strength: Ultimate (UTS), MPa 600
630
Tensile Strength: Yield (Proof), MPa 320
530

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1380
1420
Specific Heat Capacity, J/kg-K 490
470
Thermal Conductivity, W/m-K 17
41
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 13
4.1
Density, g/cm3 7.6
7.8
Embodied Carbon, kg CO2/kg material 2.5
1.8
Embodied Energy, MJ/kg 36
23
Embodied Water, L/kg 160
60

Common Calculations

PREN (Pitting Resistance) 31
6.0
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
730
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 22
22
Strength to Weight: Bending, points 21
21
Thermal Diffusivity, mm2/s 4.6
11
Thermal Shock Resistance, points 22
18

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.050
Chromium (Cr), % 26 to 29
2.3 to 2.7
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 68.5 to 73.7
93.6 to 96
Manganese (Mn), % 0 to 1.0
0.4 to 0.7
Molybdenum (Mo), % 0
0.9 to 1.2
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 1.0
0.4 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.025
Residuals, % 0
0 to 0.5