MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. CC140C Copper

EN 1.4749 stainless steel belongs to the iron alloys classification, while CC140C copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is CC140C copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 16
11
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
44
Tensile Strength: Ultimate (UTS), MPa 600
340
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1100
200
Melting Completion (Liquidus), °C 1420
1100
Melting Onset (Solidus), °C 1380
1040
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
310
Thermal Expansion, µm/m-K 9.6
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
77
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
78

Otherwise Unclassified Properties

Base Metal Price, % relative 13
31
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 36
41
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
34
Resilience: Unit (Modulus of Resilience), kJ/m3 250
220
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 22
10
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 4.6
89
Thermal Shock Resistance, points 22
12

Alloy Composition

Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 26 to 29
0.4 to 1.2
Copper (Cu), % 0
98.8 to 99.6
Iron (Fe), % 68.5 to 73.7
0
Manganese (Mn), % 0 to 1.0
0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0