MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. C86500 Bronze

EN 1.4749 stainless steel belongs to the iron alloys classification, while C86500 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is C86500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16
25
Poisson's Ratio 0.27
0.3
Shear Modulus, GPa 80
40
Tensile Strength: Ultimate (UTS), MPa 600
530
Tensile Strength: Yield (Proof), MPa 320
190

Thermal Properties

Latent Heat of Fusion, J/g 300
170
Maximum Temperature: Mechanical, °C 1100
120
Melting Completion (Liquidus), °C 1420
880
Melting Onset (Solidus), °C 1380
860
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
86
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
22
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 13
23
Density, g/cm3 7.6
7.9
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
48
Embodied Water, L/kg 160
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 15
7.4
Stiffness to Weight: Bending, points 26
20
Strength to Weight: Axial, points 22
19
Strength to Weight: Bending, points 21
18
Thermal Diffusivity, mm2/s 4.6
28
Thermal Shock Resistance, points 22
17

Alloy Composition

Aluminum (Al), % 0
0.5 to 1.5
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0
55 to 60
Iron (Fe), % 68.5 to 73.7
0.4 to 2.0
Lead (Pb), % 0
0 to 0.4
Manganese (Mn), % 0 to 1.0
0.1 to 1.5
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 1.0
Zinc (Zn), % 0
36 to 42
Residuals, % 0
0 to 1.0