MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. C92200 Bronze

EN 1.4749 stainless steel belongs to the iron alloys classification, while C92200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is C92200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 16
25
Fatigue Strength, MPa 190
76
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 80
41
Tensile Strength: Ultimate (UTS), MPa 600
280
Tensile Strength: Yield (Proof), MPa 320
140

Thermal Properties

Latent Heat of Fusion, J/g 300
190
Maximum Temperature: Mechanical, °C 1100
170
Melting Completion (Liquidus), °C 1420
990
Melting Onset (Solidus), °C 1380
830
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 17
70
Thermal Expansion, µm/m-K 9.6
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
14
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
14

Otherwise Unclassified Properties

Base Metal Price, % relative 13
32
Density, g/cm3 7.6
8.7
Embodied Carbon, kg CO2/kg material 2.5
3.2
Embodied Energy, MJ/kg 36
52
Embodied Water, L/kg 160
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
58
Resilience: Unit (Modulus of Resilience), kJ/m3 250
87
Stiffness to Weight: Axial, points 15
6.9
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 22
8.9
Strength to Weight: Bending, points 21
11
Thermal Diffusivity, mm2/s 4.6
21
Thermal Shock Resistance, points 22
9.9

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0.15 to 0.2
0
Chromium (Cr), % 26 to 29
0
Copper (Cu), % 0
86 to 90
Iron (Fe), % 68.5 to 73.7
0 to 0.25
Lead (Pb), % 0
1.0 to 2.0
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 1.0
Nitrogen (N), % 0.15 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 1.0
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
5.5 to 6.5
Zinc (Zn), % 0
3.0 to 5.0
Residuals, % 0
0 to 0.7