MakeItFrom.com
Menu (ESC)

EN 1.4749 Stainless Steel vs. S44330 Stainless Steel

Both EN 1.4749 stainless steel and S44330 stainless steel are iron alloys. Both are furnished in the annealed condition. They have a moderately high 94% of their average alloy composition in common. There are 33 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4749 stainless steel and the bottom bar is S44330 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 180
160
Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 16
25
Fatigue Strength, MPa 190
160
Poisson's Ratio 0.27
0.27
Shear Modulus, GPa 80
78
Shear Strength, MPa 370
280
Tensile Strength: Ultimate (UTS), MPa 600
440
Tensile Strength: Yield (Proof), MPa 320
230

Thermal Properties

Latent Heat of Fusion, J/g 300
290
Maximum Temperature: Corrosion, °C 450
560
Maximum Temperature: Mechanical, °C 1100
990
Melting Completion (Liquidus), °C 1420
1440
Melting Onset (Solidus), °C 1380
1390
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
21
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.5
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.9
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 13
13
Density, g/cm3 7.6
7.7
Embodied Carbon, kg CO2/kg material 2.5
2.8
Embodied Energy, MJ/kg 36
40
Embodied Water, L/kg 160
140

Common Calculations

PREN (Pitting Resistance) 31
22
Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
91
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
25
Strength to Weight: Axial, points 22
16
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 4.6
5.7
Thermal Shock Resistance, points 22
16

Alloy Composition

Carbon (C), % 0.15 to 0.2
0 to 0.025
Chromium (Cr), % 26 to 29
20 to 23
Copper (Cu), % 0
0.3 to 0.8
Iron (Fe), % 68.5 to 73.7
72.5 to 79.7
Manganese (Mn), % 0 to 1.0
0 to 1.0
Niobium (Nb), % 0
0 to 0.8
Nitrogen (N), % 0.15 to 0.25
0 to 0.025
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0
0 to 0.8