MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. Grade 20 Titanium

EN 1.4762 stainless steel belongs to the iron alloys classification, while grade 20 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is grade 20 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 13
5.7 to 17
Fatigue Strength, MPa 180
550 to 630
Poisson's Ratio 0.27
0.32
Shear Modulus, GPa 78
47
Shear Strength, MPa 370
560 to 740
Tensile Strength: Ultimate (UTS), MPa 620
900 to 1270
Tensile Strength: Yield (Proof), MPa 310
850 to 1190

Thermal Properties

Latent Heat of Fusion, J/g 300
400
Maximum Temperature: Mechanical, °C 1150
370
Melting Completion (Liquidus), °C 1410
1660
Melting Onset (Solidus), °C 1370
1600
Specific Heat Capacity, J/kg-K 490
520
Thermal Expansion, µm/m-K 10
9.6

Otherwise Unclassified Properties

Density, g/cm3 7.6
5.0
Embodied Carbon, kg CO2/kg material 2.5
52
Embodied Energy, MJ/kg 37
860
Embodied Water, L/kg 170
350

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
71 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
2940 to 5760
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
33
Strength to Weight: Axial, points 23
50 to 70
Strength to Weight: Bending, points 21
41 to 52
Thermal Shock Resistance, points 22
55 to 77

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
3.0 to 4.0
Carbon (C), % 0 to 0.12
0 to 0.050
Chromium (Cr), % 23 to 26
5.5 to 6.5
Hydrogen (H), % 0
0 to 0.020
Iron (Fe), % 69.7 to 75.1
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Molybdenum (Mo), % 0
3.5 to 4.5
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.12
Palladium (Pd), % 0
0.040 to 0.080
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0
Sulfur (S), % 0 to 0.015
0
Titanium (Ti), % 0
71 to 77
Vanadium (V), % 0
7.5 to 8.5
Zirconium (Zr), % 0
3.5 to 4.5
Residuals, % 0
0 to 0.4