MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C81500 Copper

EN 1.4762 stainless steel belongs to the iron alloys classification, while C81500 copper belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C81500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
110
Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 13
17
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
44
Tensile Strength: Ultimate (UTS), MPa 620
350
Tensile Strength: Yield (Proof), MPa 310
280

Thermal Properties

Latent Heat of Fusion, J/g 300
210
Maximum Temperature: Mechanical, °C 1150
200
Melting Completion (Liquidus), °C 1410
1090
Melting Onset (Solidus), °C 1370
1080
Specific Heat Capacity, J/kg-K 490
390
Thermal Conductivity, W/m-K 17
320
Thermal Expansion, µm/m-K 10
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
82
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
83

Otherwise Unclassified Properties

Base Metal Price, % relative 12
31
Density, g/cm3 7.6
8.9
Embodied Carbon, kg CO2/kg material 2.5
2.6
Embodied Energy, MJ/kg 37
41
Embodied Water, L/kg 170
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
56
Resilience: Unit (Modulus of Resilience), kJ/m3 250
330
Stiffness to Weight: Axial, points 15
7.3
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
11
Strength to Weight: Bending, points 21
12
Thermal Diffusivity, mm2/s 4.6
91
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
0 to 0.1
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0.4 to 1.5
Copper (Cu), % 0
97.4 to 99.6
Iron (Fe), % 69.7 to 75.1
0 to 0.1
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0 to 0.15
Sulfur (S), % 0 to 0.015
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5