MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C90200 Bronze

EN 1.4762 stainless steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
70
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13
30
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
41
Tensile Strength: Ultimate (UTS), MPa 620
260
Tensile Strength: Yield (Proof), MPa 310
110

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1150
180
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
880
Specific Heat Capacity, J/kg-K 490
370
Thermal Conductivity, W/m-K 17
62
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
13
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 7.6
8.8
Embodied Carbon, kg CO2/kg material 2.5
3.3
Embodied Energy, MJ/kg 37
53
Embodied Water, L/kg 170
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
63
Resilience: Unit (Modulus of Resilience), kJ/m3 250
55
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 26
18
Strength to Weight: Axial, points 23
8.3
Strength to Weight: Bending, points 21
10
Thermal Diffusivity, mm2/s 4.6
19
Thermal Shock Resistance, points 22
9.5

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0
91 to 94
Iron (Fe), % 69.7 to 75.1
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Manganese (Mn), % 0 to 1.0
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0.7 to 1.4
0 to 0.0050
Sulfur (S), % 0 to 0.015
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6