MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. C95200 Bronze

EN 1.4762 stainless steel belongs to the iron alloys classification, while C95200 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is C95200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 190
120
Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 13
29
Poisson's Ratio 0.27
0.34
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 620
520
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Maximum Temperature: Mechanical, °C 1150
220
Melting Completion (Liquidus), °C 1410
1050
Melting Onset (Solidus), °C 1370
1040
Specific Heat Capacity, J/kg-K 490
430
Thermal Conductivity, W/m-K 17
50
Thermal Expansion, µm/m-K 10
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
11
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 12
28
Density, g/cm3 7.6
8.3
Embodied Carbon, kg CO2/kg material 2.5
3.0
Embodied Energy, MJ/kg 37
50
Embodied Water, L/kg 170
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
170
Stiffness to Weight: Axial, points 15
7.6
Stiffness to Weight: Bending, points 26
19
Strength to Weight: Axial, points 23
17
Strength to Weight: Bending, points 21
17
Thermal Diffusivity, mm2/s 4.6
14
Thermal Shock Resistance, points 22
19

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
8.5 to 9.5
Carbon (C), % 0 to 0.12
0
Chromium (Cr), % 23 to 26
0
Copper (Cu), % 0
86 to 89
Iron (Fe), % 69.7 to 75.1
2.5 to 4.0
Manganese (Mn), % 0 to 1.0
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0.7 to 1.4
0
Sulfur (S), % 0 to 0.015
0
Residuals, % 0
0 to 1.0