MakeItFrom.com
Menu (ESC)

EN 1.4762 Stainless Steel vs. S35045 Stainless Steel

Both EN 1.4762 stainless steel and S35045 stainless steel are iron alloys. Both are furnished in the annealed condition. They have 62% of their average alloy composition in common. There are 32 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.4762 stainless steel and the bottom bar is S35045 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 13
39
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.27
0.28
Shear Modulus, GPa 78
78
Shear Strength, MPa 370
370
Tensile Strength: Ultimate (UTS), MPa 620
540
Tensile Strength: Yield (Proof), MPa 310
190

Thermal Properties

Latent Heat of Fusion, J/g 300
310
Maximum Temperature: Corrosion, °C 440
520
Maximum Temperature: Mechanical, °C 1150
1100
Melting Completion (Liquidus), °C 1410
1390
Melting Onset (Solidus), °C 1370
1340
Specific Heat Capacity, J/kg-K 490
480
Thermal Conductivity, W/m-K 17
12
Thermal Expansion, µm/m-K 10
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.6
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 12
34
Density, g/cm3 7.6
8.0
Embodied Carbon, kg CO2/kg material 2.5
5.8
Embodied Energy, MJ/kg 37
83
Embodied Water, L/kg 170
230

Common Calculations

PREN (Pitting Resistance) 25
27
Resilience: Ultimate (Unit Rupture Work), MJ/m3 67
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
94
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 26
24
Strength to Weight: Axial, points 23
19
Strength to Weight: Bending, points 21
19
Thermal Diffusivity, mm2/s 4.6
3.2
Thermal Shock Resistance, points 22
12

Alloy Composition

Aluminum (Al), % 1.2 to 1.7
0.15 to 0.6
Carbon (C), % 0 to 0.12
0.060 to 0.1
Chromium (Cr), % 23 to 26
25 to 29
Copper (Cu), % 0
0 to 0.75
Iron (Fe), % 69.7 to 75.1
29.4 to 42.6
Manganese (Mn), % 0 to 1.0
0 to 1.5
Nickel (Ni), % 0
32 to 37
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0.7 to 1.4
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0
0.15 to 0.6