MakeItFrom.com
Menu (ESC)

EN 1.4805 Stainless Steel vs. 6012 Aluminum

EN 1.4805 stainless steel belongs to the iron alloys classification, while 6012 aluminum belongs to the aluminum alloys. There are 27 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4805 stainless steel and the bottom bar is 6012 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
69
Elongation at Break, % 9.0
9.1 to 11
Fatigue Strength, MPa 130
55 to 100
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 490
220 to 320
Tensile Strength: Yield (Proof), MPa 250
110 to 260

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
640
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 480
890
Thermal Conductivity, W/m-K 14
160
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 4.7
8.2
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
21 to 28
Resilience: Unit (Modulus of Resilience), kJ/m3 150
94 to 480
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
48
Strength to Weight: Axial, points 17
22 to 32
Strength to Weight: Bending, points 18
29 to 37
Thermal Diffusivity, mm2/s 3.7
62
Thermal Shock Resistance, points 11
10 to 14

Alloy Composition

Aluminum (Al), % 0
92.2 to 98
Bismuth (Bi), % 0
0 to 0.7
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0 to 0.3
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 44.9 to 56.8
0 to 0.5
Lead (Pb), % 0
0.4 to 2.0
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0 to 2.0
0.4 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
0.6 to 1.4
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15