MakeItFrom.com
Menu (ESC)

EN 1.4805 Stainless Steel vs. 6063 Aluminum

EN 1.4805 stainless steel belongs to the iron alloys classification, while 6063 aluminum belongs to the aluminum alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4805 stainless steel and the bottom bar is 6063 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
25 to 95
Elastic (Young's, Tensile) Modulus, GPa 200
68
Elongation at Break, % 9.0
7.3 to 21
Fatigue Strength, MPa 130
39 to 95
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
26
Tensile Strength: Ultimate (UTS), MPa 490
110 to 300
Tensile Strength: Yield (Proof), MPa 250
49 to 270

Thermal Properties

Latent Heat of Fusion, J/g 310
400
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1350
620
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 14
190 to 220
Thermal Expansion, µm/m-K 16
23

Otherwise Unclassified Properties

Base Metal Price, % relative 26
9.5
Density, g/cm3 7.9
2.7
Embodied Carbon, kg CO2/kg material 4.7
8.3
Embodied Energy, MJ/kg 66
150
Embodied Water, L/kg 180
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
13 to 27
Resilience: Unit (Modulus of Resilience), kJ/m3 150
18 to 540
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
50
Strength to Weight: Axial, points 17
11 to 31
Strength to Weight: Bending, points 18
18 to 37
Thermal Diffusivity, mm2/s 3.7
79 to 89
Thermal Shock Resistance, points 11
4.8 to 13

Alloy Composition

Aluminum (Al), % 0
97.5 to 99.4
Carbon (C), % 0.2 to 0.5
0
Chromium (Cr), % 19 to 23
0 to 0.1
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 44.9 to 56.8
0 to 0.35
Magnesium (Mg), % 0
0.45 to 0.9
Manganese (Mn), % 0 to 2.0
0 to 0.1
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.0
0.2 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.15