MakeItFrom.com
Menu (ESC)

EN 1.4805 Stainless Steel vs. CC382H Copper-nickel

EN 1.4805 stainless steel belongs to the iron alloys classification, while CC382H copper-nickel belongs to the copper alloys. They have a modest 29% of their average alloy composition in common, which, by itself, doesn't mean much. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.4805 stainless steel and the bottom bar is CC382H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
130
Elastic (Young's, Tensile) Modulus, GPa 200
140
Elongation at Break, % 9.0
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
53
Tensile Strength: Ultimate (UTS), MPa 490
490
Tensile Strength: Yield (Proof), MPa 250
290

Thermal Properties

Latent Heat of Fusion, J/g 310
240
Maximum Temperature: Mechanical, °C 1000
260
Melting Completion (Liquidus), °C 1390
1180
Melting Onset (Solidus), °C 1350
1120
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 14
30
Thermal Expansion, µm/m-K 16
15

Otherwise Unclassified Properties

Base Metal Price, % relative 26
41
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 4.7
5.2
Embodied Energy, MJ/kg 66
76
Embodied Water, L/kg 180
290

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 37
85
Resilience: Unit (Modulus of Resilience), kJ/m3 150
290
Stiffness to Weight: Axial, points 14
8.8
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 17
15
Strength to Weight: Bending, points 18
16
Thermal Diffusivity, mm2/s 3.7
8.2
Thermal Shock Resistance, points 11
16

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Bismuth (Bi), % 0
0 to 0.0020
Boron (B), % 0
0 to 0.010
Carbon (C), % 0.2 to 0.5
0 to 0.030
Chromium (Cr), % 19 to 23
1.5 to 2.0
Copper (Cu), % 0
62.8 to 68.4
Iron (Fe), % 44.9 to 56.8
0.5 to 1.0
Lead (Pb), % 0
0 to 0.0050
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0 to 2.0
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 23 to 27
29 to 32
Phosphorus (P), % 0 to 0.040
0 to 0.010
Selenium (Se), % 0
0 to 0.0050
Silicon (Si), % 1.0 to 2.0
0.15 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.010
Tellurium (Te), % 0
0 to 0.0050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0 to 0.15