MakeItFrom.com
Menu (ESC)

EN 1.4806 Stainless Steel vs. EN 1.4980 Stainless Steel

Both EN 1.4806 stainless steel and EN 1.4980 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.4806 stainless steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.8
17
Fatigue Strength, MPa 120
410
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 75
75
Tensile Strength: Ultimate (UTS), MPa 470
1030
Tensile Strength: Yield (Proof), MPa 250
680

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Maximum Temperature: Corrosion, °C 400
780
Maximum Temperature: Mechanical, °C 1000
920
Melting Completion (Liquidus), °C 1380
1430
Melting Onset (Solidus), °C 1340
1380
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
13
Thermal Expansion, µm/m-K 15
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 31
26
Density, g/cm3 8.0
7.9
Embodied Carbon, kg CO2/kg material 5.4
6.0
Embodied Energy, MJ/kg 76
87
Embodied Water, L/kg 190
170

Common Calculations

PREN (Pitting Resistance) 18
19
Resilience: Ultimate (Unit Rupture Work), MJ/m3 27
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1180
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
36
Strength to Weight: Bending, points 17
28
Thermal Diffusivity, mm2/s 3.1
3.5
Thermal Shock Resistance, points 11
22

Alloy Composition

Aluminum (Al), % 0
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0.3 to 0.5
0.030 to 0.080
Chromium (Cr), % 16 to 18
13.5 to 16
Iron (Fe), % 40.4 to 48.7
49.2 to 58.5
Manganese (Mn), % 0 to 2.0
1.0 to 2.0
Molybdenum (Mo), % 0 to 0.5
1.0 to 1.5
Nickel (Ni), % 34 to 36
24 to 27
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 1.0 to 2.5
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.015
Titanium (Ti), % 0
1.9 to 2.3
Vanadium (V), % 0
0.1 to 0.5