MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. 360.0 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while 360.0 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is 360.0 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
75
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 4.5
2.5
Fatigue Strength, MPa 120
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 480
300
Tensile Strength: Yield (Proof), MPa 250
170

Thermal Properties

Latent Heat of Fusion, J/g 320
530
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
590
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
130
Thermal Expansion, µm/m-K 15
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
34
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.8
7.8
Embodied Energy, MJ/kg 97
140
Embodied Water, L/kg 190
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
6.4
Resilience: Unit (Modulus of Resilience), kJ/m3 160
200
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
53
Strength to Weight: Axial, points 17
32
Strength to Weight: Bending, points 17
38
Thermal Diffusivity, mm2/s 3.2
55
Thermal Shock Resistance, points 12
14

Alloy Composition

Aluminum (Al), % 0
85.1 to 90.6
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
0 to 0.6
Iron (Fe), % 36.6 to 46.7
0 to 2.0
Magnesium (Mg), % 0
0.4 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.35
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 0.5
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
9.0 to 10
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.25