MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. 5059 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while 5059 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is 5059 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.5
11 to 25
Fatigue Strength, MPa 120
170 to 240
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
350 to 410
Tensile Strength: Yield (Proof), MPa 250
170 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
390
Maximum Temperature: Corrosion, °C 600
65
Maximum Temperature: Mechanical, °C 1000
210
Melting Completion (Liquidus), °C 1390
650
Melting Onset (Solidus), °C 1350
510
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
110
Thermal Expansion, µm/m-K 15
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 6.8
9.1
Embodied Energy, MJ/kg 97
160
Embodied Water, L/kg 190
1160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
42 to 75
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220 to 650
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
36 to 42
Strength to Weight: Bending, points 17
41 to 45
Thermal Diffusivity, mm2/s 3.2
44
Thermal Shock Resistance, points 12
16 to 18

Alloy Composition

Aluminum (Al), % 0
89.9 to 94
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0 to 0.25
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 36.6 to 46.7
0 to 0.5
Magnesium (Mg), % 0
5.0 to 6.0
Manganese (Mn), % 0 to 2.0
0.6 to 1.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.45
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0.4 to 0.9
Zirconium (Zr), % 0
0.050 to 0.25
Residuals, % 0
0 to 0.15