MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. EN 1.0456 Steel

Both EN 1.4807 stainless steel and EN 1.0456 steel are iron alloys. They have 43% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is EN 1.0456 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
120 to 130
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 4.5
24 to 26
Fatigue Strength, MPa 120
210 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 75
73
Tensile Strength: Ultimate (UTS), MPa 480
420 to 450
Tensile Strength: Yield (Proof), MPa 250
290 to 300

Thermal Properties

Latent Heat of Fusion, J/g 320
250
Maximum Temperature: Mechanical, °C 1000
400
Melting Completion (Liquidus), °C 1390
1460
Melting Onset (Solidus), °C 1350
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 12
48
Thermal Expansion, µm/m-K 15
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 39
2.2
Density, g/cm3 8.0
7.8
Embodied Carbon, kg CO2/kg material 6.8
1.5
Embodied Energy, MJ/kg 97
20
Embodied Water, L/kg 190
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
93 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 160
220 to 230
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
15 to 16
Strength to Weight: Bending, points 17
16 to 17
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 12
13 to 14

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0.3 to 0.5
0 to 0.2
Chromium (Cr), % 17 to 20
0 to 0.3
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 36.6 to 46.7
96.7 to 99.48
Manganese (Mn), % 0 to 2.0
0.5 to 1.4
Molybdenum (Mo), % 0 to 0.5
0 to 0.1
Nickel (Ni), % 34 to 36
0 to 0.3
Niobium (Nb), % 1.0 to 1.8
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 1.0 to 2.5
0 to 0.4
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.050