MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. EN AC-45400 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while EN AC-45400 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is EN AC-45400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
86
Elastic (Young's, Tensile) Modulus, GPa 190
72
Elongation at Break, % 4.5
6.7
Fatigue Strength, MPa 120
55
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
27
Tensile Strength: Ultimate (UTS), MPa 480
260
Tensile Strength: Yield (Proof), MPa 250
130

Thermal Properties

Latent Heat of Fusion, J/g 320
470
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1350
560
Specific Heat Capacity, J/kg-K 480
880
Thermal Conductivity, W/m-K 12
140
Thermal Expansion, µm/m-K 15
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
30
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
95

Otherwise Unclassified Properties

Base Metal Price, % relative 39
10
Density, g/cm3 8.0
2.8
Embodied Carbon, kg CO2/kg material 6.8
7.8
Embodied Energy, MJ/kg 97
150
Embodied Water, L/kg 190
1100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
14
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
49
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
32
Thermal Diffusivity, mm2/s 3.2
54
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 0
88.4 to 92.9
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
2.6 to 3.6
Iron (Fe), % 36.6 to 46.7
0 to 0.6
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0 to 2.0
0 to 0.55
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 0.1
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
4.5 to 6.0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.050
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15