MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. EN AC-51500 Aluminum

EN 1.4807 stainless steel belongs to the iron alloys classification, while EN AC-51500 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is EN AC-51500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
80
Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 4.5
5.6
Fatigue Strength, MPa 120
120
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 75
26
Tensile Strength: Ultimate (UTS), MPa 480
280
Tensile Strength: Yield (Proof), MPa 250
160

Thermal Properties

Latent Heat of Fusion, J/g 320
430
Maximum Temperature: Mechanical, °C 1000
170
Melting Completion (Liquidus), °C 1390
630
Melting Onset (Solidus), °C 1350
590
Specific Heat Capacity, J/kg-K 480
910
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
26
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
88

Otherwise Unclassified Properties

Base Metal Price, % relative 39
9.5
Density, g/cm3 8.0
2.6
Embodied Carbon, kg CO2/kg material 6.8
9.0
Embodied Energy, MJ/kg 97
150
Embodied Water, L/kg 190
1150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
13
Resilience: Unit (Modulus of Resilience), kJ/m3 160
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
52
Strength to Weight: Axial, points 17
29
Strength to Weight: Bending, points 17
36
Thermal Diffusivity, mm2/s 3.2
49
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 0
89.8 to 93.1
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
0 to 0.050
Iron (Fe), % 36.6 to 46.7
0 to 0.25
Magnesium (Mg), % 0
4.7 to 6.0
Manganese (Mn), % 0 to 2.0
0.4 to 0.8
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
1.8 to 2.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 0.070
Residuals, % 0
0 to 0.15