MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C63200 Bronze

EN 1.4807 stainless steel belongs to the iron alloys classification, while C63200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C63200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 4.5
17 to 18
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 75
44
Tensile Strength: Ultimate (UTS), MPa 480
640 to 710
Tensile Strength: Yield (Proof), MPa 250
310 to 350

Thermal Properties

Latent Heat of Fusion, J/g 320
230
Maximum Temperature: Mechanical, °C 1000
230
Melting Completion (Liquidus), °C 1390
1060
Melting Onset (Solidus), °C 1350
1040
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 12
35
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
7.6

Otherwise Unclassified Properties

Base Metal Price, % relative 39
29
Density, g/cm3 8.0
8.3
Embodied Carbon, kg CO2/kg material 6.8
3.4
Embodied Energy, MJ/kg 97
55
Embodied Water, L/kg 190
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
95 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 160
400 to 510
Stiffness to Weight: Axial, points 13
7.9
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
21 to 24
Strength to Weight: Bending, points 17
20 to 21
Thermal Diffusivity, mm2/s 3.2
9.6
Thermal Shock Resistance, points 12
22 to 24

Alloy Composition

Aluminum (Al), % 0
8.7 to 9.5
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
78.8 to 82.6
Iron (Fe), % 36.6 to 46.7
3.5 to 4.3
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 0 to 2.0
1.2 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
4.0 to 4.8
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Residuals, % 0
0 to 0.5