MakeItFrom.com
Menu (ESC)

EN 1.4807 Stainless Steel vs. C86200 Bronze

EN 1.4807 stainless steel belongs to the iron alloys classification, while C86200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.4807 stainless steel and the bottom bar is C86200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 4.5
21
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 75
42
Tensile Strength: Ultimate (UTS), MPa 480
710
Tensile Strength: Yield (Proof), MPa 250
350

Thermal Properties

Latent Heat of Fusion, J/g 320
190
Maximum Temperature: Mechanical, °C 1000
160
Melting Completion (Liquidus), °C 1390
940
Melting Onset (Solidus), °C 1350
900
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 12
35
Thermal Expansion, µm/m-K 15
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 39
23
Density, g/cm3 8.0
8.0
Embodied Carbon, kg CO2/kg material 6.8
2.9
Embodied Energy, MJ/kg 97
49
Embodied Water, L/kg 190
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 18
120
Resilience: Unit (Modulus of Resilience), kJ/m3 160
540
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 17
25
Strength to Weight: Bending, points 17
22
Thermal Diffusivity, mm2/s 3.2
11
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 0
3.0 to 4.9
Carbon (C), % 0.3 to 0.5
0
Chromium (Cr), % 17 to 20
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 36.6 to 46.7
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 2.0
2.5 to 5.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 34 to 36
0 to 1.0
Niobium (Nb), % 1.0 to 1.8
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 1.0 to 2.5
0
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0